python-logreduce

Log file anomaly extractor

Based on success logs, logreduce highlights useful text in failed logs. The goal is to save time in finding a failure's root cause. On average, learning run at 2000 lines per second, and testing run at 1300 lines per seconds. logreduce uses a *model* to learn successful logs and detect novelties in failed logs: * Random words are manually removed using regular expression * Then lines are converted to a matrix of token occurrences (using **HashingVectorizer**), * An unsupervised learner implements neighbor searches (using **NearestNeighbors**).

openSUSE Leap 16.0 没有可用的官方软件包

发行版

openSUSE Tumbleweed

openSUSE Leap 16.0

openSUSE Leap 15.6

openSUSE Leap 15.5

openSUSE Backports for SLE 15 SP7

openSUSE Backports for SLE 15 SP4

SUSE SLE-15-SP1

不受支持的发行版

下列发行版未被官方支持。使用这些软件包需要您自担风险。