python-logreduce

Log file anomaly extractor

Based on success logs, logreduce highlights useful text in failed logs. The goal is to save time in finding a failure's root cause. On average, learning run at 2000 lines per second, and testing run at 1300 lines per seconds. logreduce uses a *model* to learn successful logs and detect novelties in failed logs: * Random words are manually removed using regular expression * Then lines are converted to a matrix of token occurrences (using **HashingVectorizer**), * An unsupervised learner implements neighbor searches (using **NearestNeighbors**).

Для openSUSE Leap 16.0 відсутній офіційний пакунок

Дистрибутиви

openSUSE Tumbleweed

devel:languages:python Експериментально
0.6.1
devel:languages:python:backports Експериментально
0.6.1

openSUSE Leap 16.0

devel:languages:python:backports Експериментально
0.6.1

openSUSE Leap 15.6

devel:languages:python:backports Експериментально
0.6.1

openSUSE Leap 15.5

devel:languages:python:backports Експериментально
0.6.1

openSUSE Backports for SLE 15 SP7

devel:languages:python Експериментально
0.6.1
devel:languages:python:backports Експериментально
0.6.1

openSUSE Backports for SLE 15 SP4

devel:languages:python:backports Експериментально
0.6.1

SUSE SLE-15-SP1

Непідтримувані дистрибутиви

Наступні дистрибутиви офіційно не підтримуються. Використовуйте ці пакунки на власний ризик.