python-logreduce

Log file anomaly extractor

Based on success logs, logreduce highlights useful text in failed logs. The goal is to save time in finding a failure's root cause. On average, learning run at 2000 lines per second, and testing run at 1300 lines per seconds. logreduce uses a *model* to learn successful logs and detect novelties in failed logs: * Random words are manually removed using regular expression * Then lines are converted to a matrix of token occurrences (using **HashingVectorizer**), * An unsupervised learner implements neighbor searches (using **NearestNeighbors**).

openSUSE Leap 16.0 हेतु कोई आधिकारिक पैकेज उपलब्ध नहीं है

वितरण

openSUSE Tumbleweed

devel:languages:python अल्पविकसित
0.6.1
devel:languages:python:backports अल्पविकसित
0.6.1

openSUSE Leap 16.0

devel:languages:python:backports अल्पविकसित
0.6.1

openSUSE Leap 15.6

devel:languages:python:backports अल्पविकसित
0.6.1

openSUSE Leap 15.5

devel:languages:python:backports अल्पविकसित
0.6.1

openSUSE Backports for SLE 15 SP7

devel:languages:python अल्पविकसित
0.6.1
devel:languages:python:backports अल्पविकसित
0.6.1

openSUSE Backports for SLE 15 SP4

devel:languages:python:backports अल्पविकसित
0.6.1

SUSE SLE-15-SP1

असमर्थित वितरण

निम्नलिखित वितरण आधिकारिक रूप से समर्थित नहीं हैं। इन पैकेज के उपयोग/प्रभाव का उत्तरदायित्व आप पर है।