perl-Algorithm-Munkres

Munkres.pm

Assignment Problem: Given N jobs, N workers and the time taken by each worker to complete a job then how should the assignment of a Worker to a Job be done, so as to minimize the time taken. Thus if we have 3 jobs p,q,r and 3 workers x,y,z such that: x y z p 2 4 7 q 3 9 5 r 8 2 9 where the cell values of the above matrix give the time required for the worker(given by column name) to complete the job(given by the row name) then possible solutions are: Total 1. 2, 9, 9 20 2. 2, 2, 5 9 3. 3, 4, 9 16 4. 3, 2, 7 12 5. 8, 9, 7 24 6. 8, 4, 5 17 Thus (2) is the optimal solution for the above problem. This kind of brute-force approach of solving Assignment problem quickly becomes slow and bulky as N grows, because the number of possible solution are N! and thus the task is to evaluate each and then find the optimal solution.(If N=10, number of possible solutions: 3628800 !) Munkres' gives us a solution to this problem, which is implemented in this module. This module also solves Assignment problem for rectangular matrices (M x N) by converting them to square matrices by padding zeros. ex: If input matrix is: [2, 4, 7, 9], [3, 9, 5, 1], [8, 2, 9, 7] i.e 3 x 4 then we will convert it to 4 x 4 and the modified input matrix will be: [2, 4, 7, 9], [3, 9, 5, 1], [8, 2, 9, 7], [0, 0, 0, 0]

openSUSE Leap 15.6 हेतु कोई आधिकारिक पैकेज उपलब्ध नहीं है

वितरण

openSUSE Tumbleweed

openSUSE Leap 15.6

openSUSE Leap 15.5

openSUSE Backports for SLE 15 SP4

असमर्थित वितरण

निम्नलिखित वितरण आधिकारिक रूप से समर्थित नहीं हैं। इन पैकेज के उपयोग/प्रभाव का उत्तरदायित्व आप पर है।